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a b s t r a c t

Free flow regimes accompanied by porous walls feature commonly in a variety of natural processes and
industrial applications such as groundwater flows, packed beds, arterial blood flows and cross-flow and
dead-end filtrations. Cross-flow microfiltration or ultrafiltration processes are generally employed in a
range of industrial situations ranging from oil to medical applications. The coupled free/porous fluid
transport phenomenon plays an equally important role along with the particle transport mechanisms
concerning the separation efficiency of cross-flow membrane filtration. To provide a theoretical back-
ground for the experimental outcomes of cross-flow filtration, a mathematically sound model is desired
which can reliably represent the interfacial boundary whilst maintaining the continuity of flow field vari-
ables across the interface between the free and porous flow regimes. Notwithstanding the numerous
attempts reported in the literature, the development of a generic mathematical model for coupled flows
has been prohibited by the complexities of interactions between the free and the porous flow systems.
Henceforth, the aim of present work is to gain a better mathematical understanding of the interfacial phe-
nomena encountered in coupled free and porous flow regimes applicable to cross-flow filtration systems.
The free flow dynamics can be justifiably represented by the Stokes equation whereas the non-isothermal,
non-inertial and incompressible flow in a low permeability porous medium can be handled by the Darcy
equation. Solutions to the system of partial differential equations (PDEs) are obtained using the finite
element method employing mixed interpolations for the primary field variables which are velocity and
pressure. A nodal replacement scheme previously developed by the same authors has been effectively
enforced as the boundary constraint at the free/porous interface for coupling the two physically different
flow regimes in a single mathematical model. A series of computational experiments for permeability
values of the porous medium ranging between 10−6 and 10−12 m2 have been performed to examine the
susceptibility of the developed model towards complex and irregular shaped geometries. Our results
indicate that at high permeability values, the discrepancy in mass balance calculations is observed to be

significant for a curved porous surface, which may be attributed to the inability of the Darcy equation to
represent the flow dynamics in a highly permeable medium. At a low permeability, a very small amount
of fluid permeated through the free/porous interface as most of the fluid leaves the domain through the
free flow exit. The geometry and permeability of the free/porous interface are found to affect the amount
of fluid passing through the porous medium significantly. All the numerical solutions that are presented

lidat
have been theoretically va
computational domains.
. Introduction

The combination of free flow and flow through a porous medium
xists in a variety of fluid processes occurring naturally or taking
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ed for their accuracy by computing the overall mass continuity across the
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lace in many industrial applications such as cross-flow and dead-
nd filtration, heterogeneous catalytic reactions, subsurface flows
nd solidification of metal alloys. Though the flow regimes present

n these processes seem to be similar, the flow field characteris-
ics are observed to vary mainly due to the nature of the interface
eparating the free and porous regimes. In some of the above men-
ioned processes, the free/porous interface is distinct and stationary
hereas in others the interface is moving with the fluid. Cross-flow

http://www.sciencedirect.com/science/journal/13858947
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Nomenclature

Kx permeability of medium in x-direction
Ky permeability of medium in y-direction
p hydrostatic fluid pressure
�x velocity of fluid in x-direction
�y velocity of fluid in y-direction

Greek symbols
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� density of fluid

ltration is an effective separation technology that finds application
n a wide range of areas including water treatment systems, clean
nvironment technologies, and energy production.

Cross-flow membrane filtration, frequently termed low shear-
angential filtration is used to clean fluids that are difficult to filter
nd to separate fine matter such as cells, proteins, enzymes and
iruses. Unlike the normal pressure driven dead-end filtration, the
uid is pumped to flow tangentially over a porous boundary, layer
r surface. A small part of the fluid penetrates through the porous
oundary and the major amount flows out of the filtration assembly
hich is then re-circulated. During the initial period of filtration,

he cross-flow of fluid provides sufficient shear to drive the particles
eposited on the porous surface to avoid blockage of the pores.

A significant contribution to modelling of cross-flow microfil-
ration is by Belfort and Nagata [1] who emphasized the need
or detailed understanding of the fluid dynamics to analyse the
ffects of concentration polarisation and membrane fouling. In a
ater article, Belfort [2] attempted modelling of multiphase flows
f macromolecules and colloidal suspensions through cross-flow
ltration membranes. Besides this, enormous work has been listed

n the literature concerning modelling characterization along with
lassification of membrane cross-flow filtrations ([3]; Schmitz et
l. [40]; [4]). Huang and Morrissey [5] carried out finite element
imulations of fluid dynamics in cross-flow polysulphone mem-
rane ultrafiltration module to predict the effects of concentration
olarisation. Richardson and Nassehi [42] developed a Streamline
pwind Petrov Galerkin (SUPG) finite element scheme to model

he free flow domains having curved porous boundaries with a
pecialised case of cross-flow membrane filtrations. Ripperger and
ltmann [6] have discussed in detail the historical developments in

he cross-flow filtration along with the mechanisms behind particle
epositions on the membrane surface.

Many factors such as the flow Reynolds number, physical prop-
rties of the porous medium and rheological behaviour directly
ffect the flow behaviour of laminar free flow adjacent to porous
alls. Berman [7] attempted a solution to the problem of two-
imensional laminar flow in channels having porous walls based
n the assumption of uniform wall suction. On similar grounds,
uan and Finkelstein [43] came up with the solution for axisym-
etric channels. Both these solutions are reported to be valid

t values of Reynolds number nearing one. Following this, most
mportant experimental and theoretical works on this topic were
ased on the hypothesis that a uniform value of filtration velocity
xists along the porous wall which requires either a variable trans-
embrane pressure drop or a permeability that varies along the

ength of the porous wall [8,9]. Durlofski and Brady [13] proved

he existence of similarity solutions for two-dimensional chan-
el flows for all ranges of Reynolds numbers, which is not true
onversely for axisymmetric flows. Chatterjee and Belfort [35] pre-
ented a detailed review of mathematical models dealing with
aminar fluid flow in a porous channel with wall suction or injection.
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ore recently, Oxarango et al. [10] developed a one-dimensional
odel to determine laminar flow of fluid in a porous channel with
all suction or injection based on the combinations of perturba-

ion analysis and averaging techniques. The model was validated
gainst a CFD code and it was found out that the flow properties
uch as inertia terms which affect the wall suction conditions were
reserved.

The conservation of linear momentum for free flow through
he channel is generally expressed by Cauchy’s equation contain-
ng terms corresponding to viscous or convective transport. In the
ase of generalised Newtonian fluids, the Cauchy’s stress tensor is
onsidered to be a function of the instantaneous rate of strain and
s independent of memory of deformation. In some highly viscous
ncompressible fluid flows, the Reynolds number is small enough to
eglect the contribution to the flow by a convection mechanism and
auchy’s equations takes the form of Stokes equations for creeping
ow.

The origin and the fundamentals behind the existence of the
arcy equation have been described in detail by Lage [37]. The
alidity of Darcy’s equation in representing flow through porous
edia is widely accepted [21,44]. The validity of the Darcy equa-

ion is subjected to assumptions such as low Reynolds number
nd no fluid/porous media interaction. Darcy’s law faces severe
riticisms regarding the order of the differential equation and the
orresponding inability to specify no-slip boundary conditions at
olid walls and impose the standard mass continuity restrictions
t porous and open fluid interfaces. In addition Darcy’s law is only
alid for the value of Reynolds number close to unity. To ameliorate
hese limitations, various researchers came forward with different

odifications to the conventional Darcy equation.
The porous medium is a material consisting of a solid structure

ith an interconnected void and on the pore scale, i.e. microscopic
cale, flow quantities such as velocity and pressure will be irregular
11]. In real time experiments, the flow quantities are measured as
n average over area or volume occupied over a number of pores
macroscopic level). Although the Darcy equation could be derived
y cumulative averaging of the free flow equations over each and
very individual pore, the free and porous flow regimes differ con-
iderably on a macroscopic scale of reference. These two distinct
ow regimes are interconnected by a rigid interface or barrier and
he continuity of the physical entities associated with both the
egimes across the barrier remains the crucial issue to be assessed
n modelling of combined flow phenomena.

The complexities of interactions underlying coupled free and
orous flow regimes have prevented development of a general
athematical model and a robust solution procedure, which is

ndependent of the nature and geometry of flow regimes and the
eparating interface. A generic mathematical model is requisite
hich can represent the individual free and porous flow behaviour

long with accurate interpretation of the interfacial physics. In
ddition, the different orders of velocity differentials in the Stokes
nd the Darcy equations exacerbate the situations and make their
traightforward linking impossible due to the incompatibility of the
oundary constraints.

To ameliorate the situation, researchers have proposed two rad-
cally different approaches. The first approach soley supports the

odifications to the original Darcy equations such as the well-
nown Brinkman equation which introduces viscous diffusion [45].
he velocity derivatives in the Brinkman equation are of identical
rder to that of the Stokes equation and enhance their conju-

ate solution without any interfacial constraints. However, the
heoretical study by Lundgren [46] and Kim and Russell [12] con-
rmed the applicability of the Brinkman equations only for porous
edia having higher permeability values ranging above 10−7 m2. In

ddition, the Brinkman equation introduces a term known as effec-
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ive Brinkman viscosity, whose value unfortunately can neither
e determined theoretically nor can be evaluated by experimen-
ation [11,13]. Therefore, in most cases the Brinkman effective
iscosity is assumed to be equal to the fluid viscosity [14,15]. How-
ver, in filtration of suspensions the effective viscosity of the feed
tream cannot be equal to the clean filtered fluid viscosity and
ay lead to wrong interpretation of actual process. Secondly, in

he case of porous media of very low permeability of the order of
0−12 m2 or greater, the possible occurrence of a boundary layer
nside the porous medium in the vicinity of interface is almost
mpossible.

The second approach emphasizes the need for specification of
ome kind of slip condition at the interface relating the field vari-
bles such as velocity and pressure and in some cases stress from
oth the flow regimes. Beavers and Joseph (1967) [44] proposed
hat the interfacial velocities of the freely flowing fluid and the
uid velocity in the porous matrix could be related by an ad hoc
atching interface boundary condition

∂uf

∂y
= ˛√

K
(uf − um)

here uf is the velocity of the flow in fluid calculated at y = 0+

nd um is the seepage velocity measured at small distance outside
he interface, suggesting the existence of a thin layer just inside
he porous medium over which the velocity transition occurs. The
imensionless slip wall coefficient ˛ is independent of the fluid
iscosity and apart from permeability depends on the structural
arameters of the porous medium and is specific to the geometric

eatures of the interface. Followed by Beavers and Joseph (1967)
44] many analogous relationships, modifications and alterations
or this interfacial constraint have been proposed by Saffman [47],
ones [16], Neale and Nader [17], Haber and Mauri [48], Vafai and
hiyagaraja [15], Sahraoui and Kaviany [18] and Ochoa-Tapia and
hitaker [19].
The slip boundary conditions like the classic Beavers–Joseph

onstraints require continuation of the velocity and tangential com-
onents of shear stress. In this case, the interfacial velocities of
he fluid in the free flow and porous regimes are related by an ad
oc matching condition, which admits a discontinuity in their tan-
ential component. This is an empirical approach deduced from
simple one-dimensional situation and its extension to multi-

imensional scenarios is not well understood. The imposition of
slip boundary condition at the free/porous interface includes the

alculation of a slip wall coefficient ˛. Though the actual predic-
ion of this coefficient by any experimental or analytical technique
ppears to be straightforward for simplistic domains, its evaluation
or irregular and complex geometrical computational domains is
ractically impossible.

A community of mathematicians and physicists have been work-
ng over the past three decades to find analytical and numerical
olutions to the conjugate problem of Navier–Stokes and Darcy
quations. The foundation of most of these solution techniques is
n the application of Beavers–Joseph slip wall conditions at the
ree/porous interface. Salinger et al. [20] presented a numerical
rocedure to solve large scale coupled free/porous steady-state
ows encountered in spontaneous ignition of porous coal stock-
iles using mixed P2/P1 finite elements. The computations were
bserved to be totally insensitive to the values of slip coefficient
mployed at the interface which minimizes the effect of empiri-

ism involved in the Beavers–Joseph slip condition. Gartling et
l. [21] presented a finite element formulation to solve the cou-
led Navier–Stokes and Darcy system in context of two practical
pplications having a fixed free/porous interface and an emerg-
ng free/porous interface as in alloy solidification problems. The
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oupling of the Navier–Stokes and Darcy models exhibited the
rawback of handling stress boundary conditions at the interface.

Discaccitati and Quarteroni [22] introduced a differential sys-
em based on the coupled Navier–Stokes/Darcy equations for the

odelling of interactions between surface and groundwater flows.
hey proposed an iterative subdomian method based on a domain
ecomposition approach to solve the coupled flow problem using
nite elements. At the free/porous boundary, the normal compo-
ent of the Cauchy stress from the Stokes region is equated to the
ressure from the Darcy domain. The tangential component of the
auchy’s stress is related to the seepage velocity in the porous
egion at the interface by a slip wall condition similar to Beavers
nd Joseph (1967) [44]. The significant contributions to this topic
an be selectively listed as Mardal et al. [38] Miglio et al. [23] and
ayton et al. [49].

The existence of viscous stress terms in the Navier–Stokes
quations, which are in the form of second order PDEs makes
traightforward linking of these equations to Darcy equations in
finite element scheme nearly impossible. To resolve this issue,
assehi and Petera [39] presented a novel scheme for coupling
avier–Stokes and Darcy equations along a porous boundary in a
ow regime representing an axisymmetric slurry filtration system.
he scheme is based on least-squares finite element formulation in
onjunction with use of C1 continuous Hermite elements which
void the formulation of inter-elemental flux terms and can be
dvantageously applied for combined flow problems without mak-
ng any unrealistic assumptions. However these elements lack the
nflexibility, in general and their application in complex domains is
normously complex and computationally expensive.

Later, Nassehi [24] developed a robust finite element simulation
cheme for the combined Navier–Stokes/Darcy flows applicable
or cross-flow filtration systems in which the imposed interfa-
ial condition at the free/porous interface is the Darcy equation.

perturbed form of continuity equation is used, enhancing the
mployability of equal-order interpolation functions for velocity
nd pressure. The computational results using this scheme are
ound to preserve mass continuity in complex branching flow
omains. The flexibility of this scheme was further analysed by
ubjecting variations in inlet fluid velocity, viscosity, porous wall
ermeability and exit conditions.

Damak et al. [25] reported an attempt to combine the
avier–Stokes and Darcy’s equations to predict the growth of the
oncentration polarisation boundary layer in tubular cross-flow
embrane filters. They simulated the fluid flow behaviour in a

orous tube with variable wall suction. The flow throughout the
ree flow region is considered to be fully developed and variable
all suction is assumed along the length of the porous section.

he governing equations are discretised using a finite difference
umerical method. To simplify the model, the slip effect at the
embrane surface is taken to be negligible as shown by Schmitz

nd Prat [26]. At the membrane surface, the axial velocity com-
onent and the radial velocity normal to the membrane surface
ave been expressed using the Darcy’s equation. The simulations
re carried out for a large range of Reynolds numbers with and
ithout porous wall suctions. Although the results were theoreti-

ally validated through overall mass continuity checks the general
ssumption of the developed flow condition in these coupled flow
egimes is still inappropriate and questionable.

More recently Rahimi et al. [27] carried out a CFD study to pre-
ict the water permeate flux through microfiltration membrane

odules. They used time-averaged Navier–Stokes equations along
ith RNG version of the k–� turbulent closure models to model
ows within membrane cells. The source terms in the momentum
alance Navier–Stokes equations were replaced by the Darcy equa-
ion in order to capture the effects of small scale turbulence. Finite
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olume approach was adopted to discretise and solve the final sys-
em of equations in conjunction with use of a second order scheme
nd the SIMPLE pressure–velocity coupling algorithm. The simula-
ions were carried out in large trapezoidal, small trapezoidal, skew
arriers and empty cells through imposition of pressure boundary
onditions at the inlet and outlets of the flow domain. Despite a
obust 3D CFD modelling effort their model could not account for
ffects such as cake formation and appropriate treatment of flow
ydrodynamics at the Navier–Stokes/Darcy interface which can
esult in significant errors in permeate flux measurements across
he membrane barrier.

Zhang et al. [28] explored the use of CFD to implement a general
as–blood transport model for hollow fiber membrane-based oxy-
enators. The computational domain used in their studies consisted
f an inlet, outlet, and a parallel flow chamber containing of a square
ber bed. The solid geometries were modelled in computer-aided
esign (CAD) software package Solidworks (Solidworks Corpora-
ion, Concord, MA, USA) and later meshed in Gambit (Fluent Inc.,
ebanon, NH, USA) using 3D Tetrahedral/Hybrid elements. Porous
ow hydrodynamics were approximated by the Ergun equation and

n essence the porous media model is an added momentum sink in
he Navier–Stokes momentum equations following a one-domain

odelling approach. The blood oxygenation process was modelled
sing the convection–diffusion equation. An unstructured-mesh
nite volume commercial CFD solver, Fluent (Fluent Inc., Lebanon,
H, USA), was used to solve the governing model equations in
hich user defined functions (UDF’s) were written for the blood

xygenation process and coupled with Fluent. They validated their
odel against a mini-oxygenator available from Medtronic Affin-

ty NT blood–gas oxygenator. However, intricacies arising from the
reatment of flow hydrodynamics at the interfacial level were left
gnored and are bound to result in errors for oxygenation mass
ransfer design predictions. Such intricacies left unresolved mainly
hrough the use of general purpose commercial CFD codes based on
ne-domain approaches. Further, as they point out in their work, it
till remains a challenging task to quantitatively analyse the local
uid dynamics to study the effects of packing of hollow fibers and
tructure of the membrane oxygenators on the oxygen transfer and
lood trauma, because the blood flow pattern in membrane oxy-
enators is complicated and difficult to measure.

Chew et al. [29] developed an experimental technique known
s Fluid Dynamic Gauging (FDG) to characterize the deposition
f fouling layers on porous surfaces such as those experienced
n membrane/filtration systems. They simulated, dead-end micro-
nd macro-filtration processes using filter paper and glass ballotini
uspensions. FDG was then used to track, in situ and time-variant
uild-up of a ballotini cake during the filtration process. The
ermeate flux through the filter paper was also simultaneously
onitored. The technique exploits the flow characteristics of the

iquid as it is drawn by suction through the nozzle and knowledge
f the flow rate of the fluid going through the nozzle will provide
nformation on the nozzle location in space which can allow one
o calculate the location of the surface, and thereby any change in
he deposit layers, ı, resulting from deposition or cleaning can be
etermined from ı = h0 − h. To illustrate the flow hydrodynamics
f FDG process they later performed CFD studies with particular
ocus on the flow patterns and stresses imposed on the porous sur-
ace. Governing equations comprising of Navier–Stokes, Darcy’s and
ontinuity equations were solved using the Augmented Lagrangian
inite Element Method implemented in a commercial partial dif-

erential equation solver, FastfloTM. The domain was represented
sing unstructured triangular elements and the governing equa-
ions were solved using a quadratic approximation. The code was
nitially used to solve a simple test case in a cross-flow filtration
ubular membranes setup involving a laminar fluid flow along a
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orous pipe with variable wall suction. The flow was assumed to
e axisymmetric, steady and incompressible and physical proper-
ies such as density, viscosity and porosity were assumed to be
onstant. The permeability of the filter paper was assumed to be
omogenous and isotropic. The feed stream in the pipe tangential
o the porous wall was modelled using the Navier–Stokes equation
hilst the variable suction at the porous wall was described by
arcy’s law. An interesting aspect of all their CFD simulations was

he approximation of interface free/porous boundary as a surface
f the filter paper in which the axial velocity at the permeable sur-
ace was given by the Darcy’s law and the slip velocity was assumed
o be zero. They claimed that the slip effect at the permeable sur-
ace in a cross-flow filtration system is practically negligible and
hus imposed the no-slip boundary condition at the interface. How-
ver, it has been previously shown by Reddy and Gartling [30] that
mposition of no-slip wall boundary conditions at the free/porous
nterface is incompatible with the solution of Darcy equation.

It is apparent from most of the recent studies in the literature
hat modelling of coupled free/porous flows is based on many sim-
lifying assumptions. Some of the researchers consider the use of
rinkman equation to safely avoid the incompatibility constraints
osed by the mathematical operators whilst others have developed
odels which are only applicable to simplistic geometric domains
ith reasonably high permeability, and thus their applications to

eal life engineering problems is still restrictive.
The current work is a subsidiary effort realised through a multi-

isciplinary EU project focusing on hydrodynamic modelling of
ead-end filtration systems that are used for actuation of hydraulic

ubrication systems in commercial airliners. Taking into consid-
ration the wide scale industrial applicability of the filtration
rocesses, initially a two-dimensional model was developed for
imulating dead-end filtration processes, which was later extended
o cater the needs of cross-flow membrane filtration industry. The
resent work can also be regarded as an advanced version of the
orks previously carried out by Nassehi [24].

In this work, the governing equations of the cross-flow filtration
etup are solved using the finite element method in conjunction
ith the use of mixed P2/P1 C0-continuous rectangular elemental

pproximations for velocity and pressure fields in order to satisfy
he Ladyhenskaya Babuska Brezzi (LBB) stability criterion [31,32]
or incompressible flow problems. Reviewing the discussion of
nterface conditions, it can be inferred that the imposition of artifi-
ial interface conditions become impracticable for special cases of
ombined flow problems encountered in industrial filtration pro-
esses. Therefore in the current work the free and porous flow
quations have been linked at the interface using a nodal replace-
ent procedure developed by Nassehi et al. [33], Hanspal et al.

34,36] and Wakeman et al. [41].
The free flow is modelled by the Stokes equations for the creep-

ng flow regime whereas the porous flow dynamics is represented
y the Darcy equation. The developed model is capable of simulat-
ng both Newtonian and non-Newtonian fluid flows. The interface
eparating the free and porous flow regimes is considered to be
urved surface, which is the case in cross-flow filtration. A series of
umerical experiments are carried out to examine the robustness
nd compatibility of the developed scheme for permeability values
anging between 10−6 and 10−12 m2 for variant operating condi-
ions. The developed computer code has also been analysed for
omplex geometrical computational domains usually observed in
ltration equipments. The converged results from our simulations

ave been theoretically validated for their accuracy by evaluating
ass balance continuity across the computational domains. The

eveloped simulation software will provide supportive evidence
or the validity of any experimental data but will not replace any of
he pure theoretical concepts related to an actual process.
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. Mathematical model

A two-dimensional mathematical model, based on flow and
onstitutive equations is considered. The domains consist of a free
ow region described by the Stokes equations and the porous
egion described by the Darcy equation. In the absence of body
orces the creeping, steady-state, isothermal flow of a shear thick-
ning (STF) generalised Newtonian fluid in coupled free/porous
egimes can be represented by the following equations.

Conservation of momentum:
(a) Free flow regime

−∂p

∂x
+ ∂

∂x

[
2�

∂vx

∂x

]
+ ∂

∂y

[
�

(
∂vx

∂y
+ ∂vy

∂x

)]
= 0

−∂p

∂y
+ ∂

∂y

[
2�

∂vy

∂y

]
+ ∂

∂x

[
�

(
∂vy

∂x
+ ∂vx

∂y

)]
= 0

(1)

here, p is the pressure, �x and �y are the fluid velocity in x- and
-directions respectively and � is the fluid viscosity.

(b) Porous flow regime

�

Kx
vx + ∂p

∂x
= 0

�

Ky
vy + ∂p

∂y
= 0

(2)

Equation of continuity:

∂vx

∂x
+ ∂vy

∂y
= 0 (3)

.1. Boundary conditions

The governing equations are solved subject to the following
oundary conditions. At the inlet of the free flow region a plug
ow velocity is specified. On the impermeable boundaries of
he free flow region, no-slip wall velocity boundary conditions
re imposed, whilst on the permeable boundaries of the porous
egion perfect slip wall boundary conditions are imposed. At the
ree/porous interface no artificial condition is imposed, instead a
irect linking procedure has been employed. Finally at the exit of
he porous domain a zero pressure datum has been imposed. At
he exit of the free flow domain stress-free boundary conditions
in essence no boundary conditions) have been imposed. This is
utomatically achieved by neglecting the line integrals in the finite
lement working equations (refer [33] for details) of combined flow
odel.

.2. Finite element formulations

The finite element method employed in the present work is
ased on the UVP scheme in which all the field variables, i.e. veloc-

ty components and pressures, are calculated simultaneously. The
nknown variables u, � and p are approximated over an element
s:

≈ ũ =
n∑

j=1

Njuj; v ≈ ṽ =
n∑

j=1

Njvj; p ≈ p̃ =
m∑

l=1

Mlpl

here, Nj and Ml are the velocity and pressure shape functions
espectively (m < n).
After substitution of these approximations into the governing
quations and weighting of the generated residuals via the standard
alerkin method, the weak variational formulation corresponding

o the combined free/porous flow model is obtained. To reduce the
nter-element continuity requirement of field variables to C0 the

d
c

T
c

ing Journal 149 (2009) 132–142

econd order differentials of velocity, and to maintain the consis-
ency of the formulation of the first order differentials of pressure
n this statement, are treated by Green’s theorem respectively. Line
ntegrals appearing after the application of Green’s theorem are
aken to the right hand side of the variational statement [50]. These
ine integrals cancel out during the final assembly of the stiffness

atrices or are replaced using the boundary conditions. The final
nite element working equations for the coupled free/porous flow
odel can be obtained from Nassehi et al. [33].
To couple the two different flow regimes, the Darcy equation

s imposed effectively as the boundary condition for the Stokes
quation at the free/porous interface. This imposition alleviates the
omplex situation of matching the flux terms (i.e. line integrals)
rising in both the domains. In the stiffness matrix of the free flow
lements present on the free/porous interface, the Stokes terms
orresponding to the interfacial nodes are replaced by the appro-
riate form of the discretised Darcy components, and vice versa at
he porous/free interface. The complete procedure for the numer-
cal linking of the coupled flow regime can be elaborated with the
elp of Fig. 1.

Fig. 1 shows the three elements in the Stokes flow region P, X
nd Q connected in series in the direction of flow. The element X is
onnected at the bottom to the element Y which is in the Darcy flow
egion. The overall assembly replicates the situation that occurs in a
ypical cross-flow filtration process. The boundary AB of the Stokes
lement X coincides with boundary A′B′ of the Darcy element Y at
he free/porous interface. Here, i1, j1 and k1 are the nodes of the
tokes element X on the free/porous interface AB–A′B′ whereas i2,

2 and k2 are the interfacial nodes for the Darcy element Y. In the
nal assembly of stiffness matrices, terms corresponding to nodes

1, j1 and k1 of the Stokes element X are replaced by the terms
orresponding to nodes i2, j2 and k2 of the Darcy element Y. This
ubstitution circumvents the difficulty arising from imposing any
rtificial boundary conditions on the free/porous interface without
iolating the physics behind the coupled flow phenomenon.

. Results and discussion

Results presented in this manuscript have been simulated using
he extended version of an FEM based in-house code named
CFAMP (Ph.D. Thesis: [33,34]) Aircraft Cartridge Filter Analysis
ilter Modelling Program written in FORTRAN. This code has been
sed for modelling combined flows in dead-end and cross-flow
ltration applications. Results have been presented for two identi-
al rectangular channel domains with distinct interfacial boundary
eparating the free and porous flow regions. In all the computations,
he fluid is considered to be a generalised Newtonian fluid with a
ower law index of 1.0. The consistency coefficient in the power law
odel is taken to be 80 Pa s and the density of fluid is assumed to

e 970 kg m−3. The porous matrix is assumed to be homogeneous
nd isotropic. For both the computational domains, simulations
re carried out for permeability values ranging between 10−6 and
0−12 m2. Results are presented for two extreme values of perme-
bility, i.e. 10−6 and 10−12 m2.

In the first case, a rectangular cross-flow membrane filtration
odule is considered with a flat free/porous interface as shown in

ig. 2 with all the imposed boundary conditions.
The length of the free flow domain is 0.015 m with a width of

.005 m. The length of the porous region is 0.0075 m with a width
f 0.0025 m. The overall width of the domain extending in the radial

irection is 0.005 m. The height of the rectangular exit is small
ompared to that of the inlet and is 0.00125 m.

The overall domain is discretised with 9-noded Lagrangian
aylor-Hood elements. The total number of elements is 2000 which
orresponds to 8221 nodes. In the context of these boundary condi-
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Fig. 1. Schematic representation of linking of stokes and darcy regimes.

ss-flow

t
t
i
r

Fig. 2. Boundary conditions on the rectangular cro
ions, simulations are carried out for two values of permeability of
he porous medium. When the permeability of the porous medium
s 10−6 m−2, the simulated flow field developed is pictorially rep-
esented in the form of velocity vectors in Fig. 3.

t
t
t

Fig. 3. Developed flow filed over the rectangular cross-flow filtration domain wit
filtration domain with flat free/porous interface.
As the permeability of the porous medium is very high, most of
he fluid entering the domain seeps across the free/porous interface
o the bulk of the porous medium. A very small amount finds its way
hrough the exit of the rectangular free flow channel and as a result

h flat free/porous interface with permeability of porous medium 10−6 m2.
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Fig. 4. Developed pressure field over the rectangular cross-flow filtration domain with flat free/porous interface with permeability of porous medium 10−6 m2.
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Fig. 5. Developed flow field over the fectangular cross-flow filtration doma

dead-zone is observed in the bottom right corner in the free flow
hannel ˝f. The flow tends to attain a developed parabolic state
efore entering the porous matrix. At every computational point

n the porous regime, the flow is in plug flow state. The developed
ressure field over the entire computational domain is represented

n the form of coloured contours in Fig. 4.
The pressure values in the free flow channel are relatively con-

tant before the fluid reaches the free/porous barrier. As the fluid
enetrates across the interface, a pressure gradient is observed
eing developed in the direction of flow. In the porous matrix, a
radual decrease in pressure values is observed as the fluid seeps

hrough the pores. A localised low-pressure region is observed in
he vicinity of the narrow exit of the free flow region.

In the second experiment, the permeability of the porous
edium is lowered to the value of 10−12 m2. The simulated velocity

ectors of this coupled flow system are represented in Fig. 5.

t
s
m

i

Fig. 6. Developed pressure field over the rectangular cross-flow filtration domain w
h flat free/porous interface with permeability of porous medium 10−12 m2.

Although, the inlet fluid is in uniform plug flow condition, it
hows the tendency to attain a fully developed parabolic profile in
he free flow region. Since the permeability of the porous matrix
s very low, a small amount of fluid is observed to be successful in
enetrating the free/porous interface. All the fluid is observed to
et concentrated near the narrow exit and a localised high veloc-
ty field is observed in that region. The amount of fluid flowing
hrough the porous matrix can be found by calculating the mass
alance over the domain. It is found that only 1.5% of the inlet
uid is passing through the porous barrier and the rest about 98.5%

s flowing across the free flow region. The discrepancy between

he inlet and outlet masses amounts to 3%, which is within a
atisfactory limit and primarily can be attributed to mesh refine-
ent.
The corresponding hydrostatic pressure field is shown in Fig. 6

n the form of flooded contours.

ith flat free/porous interface with permeability of porous medium 10−12 m2.
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Table 1
Mass balance calculations for rectangular domain with straight free/porous interface.

Permeability
(m2)

Total mass in
(Min) (kg)

Mass at exit
(Emass) (kg)

Mass of permeate
(Pmass) (kg)

Total mass out (Mout) = Emass + Pmass (kg) %Error = Min−Mout
Min

× 100

1 × 10−6 4.7894 × 10−4 5.6371 × 10−6 4.7511 × 10−4 4.8075 × 10−4 −0.3789
1 × 10−7 4.7894 × 10−4 3.1740 × 10−5 4.4802 × 10−4 4.7976 × 10−4 −0.1727
1 × 10−8 4.7894 × 10−4 1.9286 × 10−4 2.8079 × 10−4 4.7364 × 10−4 1.1051
1 × 10−9 4.7894 × 10−4 4.0502 × 10−4 6.0549 × 10−5 4.6556 × 10−4 2.7915

1 × 10−10 4.7894 × 10−4 4.5659 × 10−4 7.0103 × 10−6 4.6360 × 10−4 3.2019
1 × 10−11 4.7894 × 10−4 4.6266 × 10−4 7.1374 × 10−7 4.6338 × 10−4 3.2486
1 × 10−12 4.7894 × 10−4 4.6328 × 10−4 7.1125 × 10−8 4.6335 × 10−4 3.2538
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Fig. 7. Boundary conditions on the rectangular cross

The pressure in the free flow region is changing as the fluid
asses through the porous region. In the porous region, a steep
radient in pressure is observed. Due to the stress-free boundary
ondition at the exit, a low-pressure field is observed there.

For all the simulations, the validity of the developed model has
een examined by means of a mass balance calculated over the
ntire computational domain. All the mass balance figures are listed
n Table 1 against the corresponding permeability values.

The mass of fluid permeating the porous media decreases as the
ermeability of the porous matrix decreases.

The second domain is identical to the one discussed previously
xcept that the interface separating the free and porous regimes
s curved, convex towards the free flow region as shown in Fig. 7.

he coupled free/porous flow domain with the curved interface is
common feature of numerous cross-flow filtration equipments.

Due to continuous deposition of particles at the inter-
ace during filter operation, the flat interface may become a

t
t
a
fl

Fig. 8. Developed flow field over the rectangular cross-flow filtration domain with
filtration domain with curved free/porous interface.

urved one (although the precise nature of the curvature is not
nown).

The overall domain is tessellated with 9-noded Lagrangian
aylor-Hood elements. The total number of nodes is 8221 corre-
ponding to 2000 elements. Similar to the case with the previous
omain, numerical experiments were carried out for two different
ermeability values of the porous medium. For the implied bound-
ry conditions, the simulated velocity field over the domain with
he permeability of the porous medium of the value of 10−6 m−2 is
hown by velocity vectors in Fig. 8.

Due to the high permeability of the porous regime, the
ree/porous interface does not pose any severe obstruction for the
uid to enter the bulk of the porous medium. Therefore, most of

he fluid inlet to the rectangular channel finds its way through
he porous matrix, crossing the free/porous barrier. A very small
mount of fluid is successful in reaching the narrow exit of the free
ow channel.

curved free/porous interface with permeability of porous medium 10−6 m2.
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Fig. 9. Developed pressure field over the rectangular cross-flow filtration domain with curved free/porous interface with permeability of porous medium 10−6 m2.
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Fig. 10. Developed flow field over the rectangular cross-flow filtration domain

The developed pressure field distribution over the entire com-
utational domain can be analysed with the help of pressure
ontours in Fig. 9.

The pressure values in the free flow channel are relatively con-
tant before the fluid reaches the free/porous barrier. As the fluid
enetrates across the interface, a steep pressure gradient is devel-
ped in the free flow channel. In the porous matrix, a gradual
ecrease in pressure values is observed as the fluid seeps through

he pores. A localised low-pressure region is observed in the vicin-
ty of the narrow exit of the free flow region. A small high pressure
egion is observed at the right hand side corner of the free/porous
nterface, designating it as a singular point in the mathematical
ense.

e
o
t
n
r

Fig. 11. Developed pressure field over the rectangular cross-flow filtration domain wi
curved free/porous interface with permeability of porous medium 10−12 m2.

Similar to the case with the flat interface, the permeability of
he porous medium is lowered to the value of 10−12 m2 and the
imulated flow field over the domain is represented in the form of
elocity vectors in Fig. 10.

The developed flow field over this coupled domain with a curved
ree/porous interface is similar to that in the domain with flat inter-
ace. As the permeability of the porous medium is very low, the
ree/porous interface presents a stringent barrier for the fluid to

nter the bulk of the porous matrix. Therefore, a very small amount
f the inlet fluid seeps through the porous medium and most of
he fluid slides across the curved interface and flows towards the
arrow exit of the rectangular free flow channel. A high velocity
egion is observed in the vicinity of the exit due to the reduced

th curved free/porous interface with permeability of porous medium 10−12 m2.
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Table 2
Mass balance calculations for the rectangular domain with curved free/porous interface.

Permeability
(m2)

Total mass in (Min)
(kg) (×104)

Mass at exit (Emass)
(kg) (×104)

Mass of permeate
(Pmass) (kg)

Total mass out (Mout) = Emass + Pmass (kg) (×104) %Error = Min−Mout
Min

× 100

1 × 10−6 4.7894 0.0487 5.0820 × 10−4 5.1307 −7.126
1 × 10−7 4.7894 0.3323 4.7687 × 10−4 5.1010 −6.505
1 × 10−8 4.7894 2.0603 2.8612 × 10−4 4.9215 −2.756
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1 × 10 4.7894 4.1286 5.7889 × 10
× 10−10 4.7894 4.5937 6.5782 × 10−6

× 10−11 4.7894 4.6470 6.6805 × 10−7

× 10−12 4.7894 4.6528 6.6673 × 10−8

ross-section of the exit port resulting in higher flow rate. The mass
alance is checked over the domain calculating the discrepancy
etween the inlet and outlet mass of the fluid, which is about 3%.
he amount of fluid passing through the porous barrier is just 1.4%
nd most of the fluid finds its way through the exit of the free flow
omain.

The hydrostatic pressure field over the domain due to incom-
ressible flow of a Newtonian fluid is shown in Fig. 11.

Before the porous barrier, the pressure in the free flow region is
lmost constant. As the fluid approaches the free/porous interface,
he pressure in the free flow region goes down since some of the
uid is penetrating the porous medium. In the porous regime, the
ressure gradually decreases and attains a null value at the exit
f the permeate zone. A localised low-pressure vortex is observed
t the exit of free flow region, where most of the fluid is pushed
hrough the narrow outlet.

Similar to the previous domain, the validity of the model is
ested by quantitative evaluations based on overall mass balance
alculations. The mass inflows and outflows figures for a range of
ermeability values are tabulated in Table 2,

In the present case, the discrepancy between inlet and out-
et masses is also found to be increasing as the porous medium
ecomes less permeable. A possible solution to minimize this
iscrepancy may be accomplished by refining the computational
esh.

. Conclusions

A finite element model for the solution of flow equations in a
wo-dimensional coupled domain has been developed, where one-
omain is a free flow region and the other is a porous material.
ample results for two geometries of differing complexity have
een presented which indicate the robustness of the scheme. All
he simulations were carried out for a wide range of permeability
alues of the porous medium, lying between 10−6 and 10−12 m2.
t very high permeability values, the discrepancy in mass balance
alculations is observed to be significant. When the permeability
s reduced the model has to cope with smaller numbers and hence
higher precision is required. Similarly when domain with curved
oundaries is modelled a higher precision is required. Considering
he trend of the mass balance error in the present work such con-
lusions are confirmed. In all cases we therefore, expect to reduce
uch errors by mesh refinement. At a low permeability, a very small
mount of fluid succeeds in crossing the free/porous barrier and
ost of the fluid leaves the domain through the free flow exit.

n the free flow region, the flow is fully developed before it starts
ntering into the porous region. The geometry of the free/porous
nterface is observed to affect the amount of fluid passing through

he porous medium as permeate. The model has been theoreti-
ally validated by calculating the mass balance over the domains.
he discrepancy in the balance in both the domains lies within an
cceptable limit of about 3%. The finite elements with unequal order
nterpolation functions for velocity and pressure generates stable

[

4.7075 1.710
4.6595 2.712
4.6536 2.827
4.6335 2.839

nd accurate solutions. When this coupled flow model is incorpo-
ated into a particle transport model, it will provide a robust and
ost-effective design and analysis tools for predicting the hydrody-
amics in industrial cross-flow filtration processes.
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